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Review: Regression

• 𝑋𝑋: Input (also called features, attributes, covariates, or 
predictors)

• Typically, 𝑋𝑋 is a vector, array, or list of numbers or strings.
• 𝑌𝑌: Output (also called labels or targets)

• In regression, 𝑌𝑌 is a real number.
• An input-output pair is (𝑋𝑋,𝑌𝑌).
• Let 𝑛𝑛, called the data set size, be the number of input-output 

pairs in the data set.
• Let 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 denote the 𝑖𝑖th input output pair.
• The complete data set is 

𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 𝑖𝑖=1
𝑛𝑛 = 𝑋𝑋1,𝑌𝑌1 , 𝑋𝑋2,𝑌𝑌2 , … , 𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛 .



Review: Nearest Neighbor (Variants)

• Given a query input 𝑥𝑥query, find the 𝑘𝑘 nearest points in the training 
data.

• Return a weighted average of their labels.
• 𝑘𝑘 = 1 is nearest neighbor
• 𝑘𝑘 > 1 with all 𝑤𝑤𝑖𝑖 equal is k-nearest neighbor
• 𝑘𝑘 > 1 with not all 𝑤𝑤𝑖𝑖 equal is weighted k-nearest neighbor

• These algorithms don’t pre-process the training data much.
• They can build data structures like KD-Trees for efficiency.



Linear Regression

• Search for the line that is a best fit to the data.
• Different performance measures correspond to different ways of 

measuring the quality of a fit.
• Sample mean squared error, or the sum of the squared errors is 

particularly common:
�MSE𝑛𝑛: 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 and SSE: ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

• Although not identical, the line that minimizes one also minimizes the 
other.

• Using sample MSE, this method is called “least squares linear 
regression.”



Linear Regression: What is a line?

𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏

�𝑦𝑦 = 𝑤𝑤1𝑥𝑥𝑖𝑖 + 𝑤𝑤2

Prediction, �𝑦𝑦𝑖𝑖 Input, 𝑥𝑥𝑖𝑖Slope, 𝑚𝑚 y-intercept, 𝑏𝑏

“weights,” or “parameters”, 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2



Models (Review)

• A model is a mechanism that maps input data to predictions.
• ML algorithms take data sets as input and produce models as 

output.

ML Algorithm Model

Data Set

Query

Prediction

A query can be one or more feature vectors.

Predictions are given for 
each feature vector in the 
query.



Parametric Model

• A model “parameterized” by a weight vector 𝑤𝑤.
• Different settings of 𝑤𝑤 result in different predictions.
• Let �𝑦𝑦 = 𝑓𝑓𝑤𝑤 𝑥𝑥

• 1-dimensional linear case:
𝑓𝑓𝑤𝑤(𝑥𝑥) = 𝑤𝑤1𝑥𝑥 + 𝑤𝑤2



Linear Regression: Hyperplanes

• What if we have more than one input feature?
• Let 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝑑𝑑) be a 𝑑𝑑-dimensional input.

• We include the 𝑖𝑖 subscript to make it clear that 1,2,… aren’t referencing 
different input vectors, but different elements of one input vector.

• We use a hyperplane:
𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝑥𝑥𝑖𝑖,1 + 𝑤𝑤2𝑥𝑥𝑖𝑖,2 + … + 𝑤𝑤𝑑𝑑𝑥𝑥𝑖𝑖,𝑑𝑑 + 𝑤𝑤𝑑𝑑+1.

Slope along the first dimension

Rate of change of the prediction as 
the first feature increases Slope along the second dimension

Rate of change of the prediction as the second feature increases

The offset, bias, or intercept term, which 
gives the prediction when the input features 
are all zero.



Linear Regression (cont.)

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝑥𝑥𝑖𝑖,1 + 𝑤𝑤2𝑥𝑥𝑖𝑖,2 + … + 𝑤𝑤𝑑𝑑𝑥𝑥𝑖𝑖,𝑑𝑑 + 𝑤𝑤𝑑𝑑+1.
• Thought: We don’t want to have to keep remembering a special 

“intercept” term.
• Idea: Drop the intercept term!

• If you want to include the intercept term, add one more feature to your data set, 
𝑥𝑥𝑑𝑑+1 = 1.

• If 𝑑𝑑 is the dimension of the input with this additional feature, we then have:
𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝑥𝑥𝑖𝑖,1 + 𝑤𝑤2𝑥𝑥𝑖𝑖,2 + … + 𝑤𝑤𝑑𝑑𝑥𝑥𝑖𝑖,𝑑𝑑

• We can write this as:

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗 𝑥𝑥𝑖𝑖,𝑗𝑗 .

• This is called a dot product and can be written as 𝑤𝑤 ⋅ 𝑥𝑥𝑖𝑖 or 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖.



Linear Regression (cont.)

�𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗 𝑥𝑥𝑖𝑖,𝑗𝑗

• How many weights (parameters) does the model have?
• 𝑑𝑑, the dimension of any one input vector 𝑥𝑥𝑖𝑖.
• Not 𝑛𝑛, the number of training data points.



Linear Regression: Optimization Perspective
• Given a parametric model 𝑓𝑓𝑤𝑤 of any form how can we find the weights 𝑤𝑤 that 

result in the “best fit”?
• Let 𝐿𝐿 be a function called a loss function.

• It takes as input a model (or model weights 𝑤𝑤)
• It also takes as input data 𝐷𝐷
• It produces as output a real-number describing how bad of a fit the model is to the 

provided data.
• The evaluation metrics we have discussed can be viewed as loss functions. 

For example, the sample MSE loss function is:

𝐿𝐿 𝑤𝑤,𝐷𝐷 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖
2

• We phrase this as an optimization problem:
argmin𝑤𝑤 𝐿𝐿(𝑤𝑤,𝐷𝐷)

For the sample MSE loss 
function, this can be any 
parametric model, not 
just a linear one!



Linear Regression: Optimization Perspective

argmin𝑤𝑤 𝐿𝐿(𝑤𝑤,𝐷𝐷)
• Recall: argmin returns the 𝑤𝑤 that achieves the minimum value of 
𝐿𝐿(𝑤𝑤,𝐷𝐷), not the minimum value of 𝐿𝐿(𝑤𝑤,𝐷𝐷) itself.

• This expression describes a massive range of ML methods.
• Supervised, unsupervised, (batch/offline) RL
• Deep neural networks
• Large language models and generative AI

• Different problem settings and algorithms in ML correspond to:
• Different loss functions
• Different parametric models.
• Different algorithms for approximating the best weight vector 𝑤𝑤.



Least Squares Linear Regression (cont.)

• Find the weights 𝑤𝑤 that minimize

𝐿𝐿 𝑤𝑤,𝐷𝐷 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖
2

𝐿𝐿 𝑤𝑤,𝐷𝐷 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 −�
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

2

Number of training data points Dimension of each input vector
(number of features per row)



Linear Regression: Least Squares Solvers

• How should one solve this problem?

argmin𝑤𝑤
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 −�
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

2

• Answer: “Least squares solvers”
• Algorithms based on concepts from linear algebra.
• Extremely effective for solving problems of precisely this form.
• Beyond the scope of this class.
• Only useful for this exact problem.

• Not effective when using other parametric models (e.g., not linear)
• Not effective when using other loss functions / performance metrics.



Linear Regression

• How do we solve this problem?

argmin𝑤𝑤
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 −�
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

2

• We will study a different approach for solving this problem.
• It is less efficient.
• It applies to almost all loss functions and parametric models 

of interest.
• Method: Gradient descent.

• Soon we will discuss gradient descent.
• For now, assume we have some way of finding the argmin𝑤𝑤𝐿𝐿(𝑤𝑤,𝐷𝐷).



Least Squares Linear Regression



Linear Regression vs Weighted k-NN for GPA 
Prediction
Weighted KNN Model:

Average MSE: 0.571 
MSE Standard Error: 0.004 

Linear Regression Model: 
Average MSE: 0.582 
MSE Standard Error: 0.004

Very simple method achieves 
nearly the same performance 
as a tuned-version of 
weighted k-NN!

Soon, we will consider more 
complex parametric models 
that can be even more 
effective.



Linear Regression Limitation

• What if the relationship between the inputs and outputs is not 
linear (or affine)?

• Linear: 𝐴𝐴1𝑥𝑥𝑖𝑖,1 + 𝐴𝐴2𝑥𝑥𝑖𝑖,2 + ⋯+ 𝐴𝐴𝑛𝑛𝑥𝑥𝑖𝑖,𝑛𝑛
• Affine: 𝐴𝐴1𝑥𝑥𝑖𝑖,1 + 𝐴𝐴2𝑥𝑥𝑖𝑖,2 + ⋯+ 𝐴𝐴𝑛𝑛𝑥𝑥𝑖𝑖,𝑛𝑛 + 𝑏𝑏

• Equivalent to linear with an additional feature 𝑥𝑥𝑖𝑖,𝑛𝑛+1 = 1.

• Idea: Have parametric functions that can represent more than 
linear functions!



Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 that are linear functions 
of the weights 𝒘𝒘.

• They need not be linear functions of the input 𝑥𝑥𝑖𝑖.

Input 𝑥𝑥𝑖𝑖
Feature 

generator 𝜙𝜙

Note: The input 𝑥𝑥𝑖𝑖  is 
a vector – an array 
of values.

Feature 1: 
𝜙𝜙1 𝑥𝑥𝑖𝑖

Feature 2: 
𝜙𝜙2 𝑥𝑥𝑖𝑖

Feature m: 
𝜙𝜙𝑚𝑚 𝑥𝑥𝑖𝑖

…

Each feature is a real number 
(not a vector or array)

Linear Regression:
𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝜙𝜙1 𝑥𝑥𝑖𝑖 + 𝑤𝑤2𝜙𝜙2 𝑥𝑥𝑖𝑖 + ⋯

Prediction, �𝑦𝑦𝑖𝑖

Note: This is equivalent to pre-processing the data, 
converting 𝑥𝑥𝑖𝑖  (length 𝑑𝑑) into 𝜙𝜙 𝑥𝑥𝑖𝑖   (length 𝑚𝑚)

Note: Each feature can depend on more than one 
element of 𝑥𝑥𝑖𝑖. So, this is 𝜙𝜙1 𝑥𝑥𝑖𝑖  not 𝜙𝜙1 𝑥𝑥𝑖𝑖,1 .



Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 that are linear 
functions of the weights 𝒘𝒘.

• They need not be linear functions of the input 𝑥𝑥𝑖𝑖.
• That is, a linear parametric model has the form:

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑚𝑚

𝑤𝑤𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 ,

where 𝜙𝜙 takes the input vector 𝑥𝑥𝑖𝑖 as input and produces a vector of 𝑚𝑚
features as output. That is, 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 is the 𝑗𝑗th feature output by 𝜙𝜙.
• 𝜙𝜙 is called the basis function, feature generator, or feature mapping 

function. 



Linear Parametric Model

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑚𝑚

𝑤𝑤𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖

• Polynomial basis
• If 𝑥𝑥𝑖𝑖 ∈ ℝ then 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖

𝑗𝑗−1 so that:
𝜙𝜙 𝑥𝑥𝑖𝑖 = 1, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑚𝑚−1

• Here 𝑚𝑚 − 1 is the degree or order of the polynomial basis.
• 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖 + 𝑤𝑤3𝑥𝑥𝑖𝑖2 + 𝑤𝑤4𝑥𝑥𝑖𝑖3 + ⋯+ 𝑤𝑤𝑚𝑚𝑥𝑥𝑖𝑖𝑚𝑚−1

• We are fitting a polynomial to the data!
• This is a non-linear function of the input 𝑥𝑥𝑖𝑖
• This can represent any smooth function (if 𝑚𝑚 is big enough).
• This is a linear function of 𝑤𝑤.



Linear Parametric Models (cont.)

• What does it mean for a function 𝑔𝑔(𝑥𝑥,𝑦𝑦) to be linear with respect 
to an input, 𝑥𝑥?

• The slope is constant as 𝑥𝑥 changes.
• The derivative with respect to 𝑥𝑥 is a constant (does not vary with 𝑥𝑥)

• Is 𝑔𝑔 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2𝑦𝑦2 linear with respect to (w.r.t.) 𝑥𝑥?
• 𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦

𝜕𝜕𝑥𝑥
= 2𝑥𝑥𝑦𝑦2, which changes with 𝑥𝑥, so no.

• Is 𝑔𝑔 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 sin(𝑦𝑦) linear w.r.t. 𝑥𝑥?
• 𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦

𝜕𝜕𝑥𝑥
= sin 𝑦𝑦 , which does not change with 𝑥𝑥, so yes!

• Is 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = ∑𝑗𝑗=1𝑚𝑚 𝑤𝑤𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 linear w.r.t.𝑤𝑤?
• 𝜕𝜕𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

𝜕𝜕𝑤𝑤𝑗𝑗
= 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 , for all 𝑗𝑗, which does not change with 𝑤𝑤, so yes!



Linear Parametric Models (cont.)

• Is 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = ∑𝑗𝑗=1𝑚𝑚 𝑤𝑤𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 linear w.r.t. 𝑥𝑥?
• 𝜕𝜕𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖,𝑗𝑗
= 𝑤𝑤𝑗𝑗

𝜕𝜕𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖,𝑗𝑗

, for all 𝑗𝑗. 
• If 𝜙𝜙 is linear w.r.t. 𝑥𝑥 then yes, otherwise no.

• Is 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝑤𝑤2𝑥𝑥𝑖𝑖,12 linear w.r.t.𝑤𝑤?
• 𝜕𝜕𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

𝜕𝜕𝑤𝑤1
= 𝑤𝑤2𝑥𝑥𝑖𝑖,12

• No. It is linear w.r.t. 𝑤𝑤1 but not linear w.r.t. 𝑤𝑤.
• Linear w.r.t. 𝑤𝑤 means that the derivative w.r.t. 𝑤𝑤 (a vector) does not depend on 𝑤𝑤

(a vector).
• Note: The derivative w.r.t. 𝑤𝑤 is

𝜕𝜕𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖
𝜕𝜕𝑤𝑤1

,
𝜕𝜕𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖
𝜕𝜕𝑤𝑤2

𝑇𝑇
This T means “transpose,” which just 
means that this should be viewed as a 
column not a row (the elements 
stacked vertically rather than 
horizontally). This isn’t important for 
this course.



Linear Parametric Models



Linear Parametric Model vs Linear Regression vs 
Weighted k-NN for GPA Prediction
(20-fold cross-validation)
• Weighted KNN Model:

• Average MSE: 0.571 
• MSE Standard Error: 0.004 

• Linear Regression Model: 
• Average MSE: 0.582 
• MSE Standard Error: 0.004 

• Polynomial Regression Model (Degree 4):
• Average MSE: 0.576 
• MSE Standard Error: 0.004

Recall k-NN
results:

A simple linear model outperforms k-NN (not 
quite a well-tuned weighted k-NN)!



Linear Parametric Models

• Pros:
• Relatively simple.
• Can represent any smooth function (given the right / enough features).
• Can use hand-crafted features.
• Quite efficient to solve for optimal 𝑤𝑤.

• Can still use least squares solvers – need not use gradient descent.
• Extremely fast to generate predictions for new inputs

• Compute features, take the dot-product with the weights (take the weighted sum)

• Cons:
• Can be hard to find good features.
• People often think linear parametric models can only represent lines, and 

so they think negatively of them.



Parametric vs Nonparametric

• ML algorithms are often categorized into parametric and 
nonparametric.

• In general:
• Parametric methods use parameterized functions with weights 𝑤𝑤.
• Nonparametric methods store the training data or statistics of the training data.

• More precisely
• Parametric:

• Have a fixed number of weights 𝑤𝑤.
• Tend to make specific assumptions about the form of the function.

• Nonparametric:
• Do not make explicit assumptions about the form of the function.
• Number of values stored tends to vary with the amount of training data (e.g., storing data).

• There is some debate about whether some methods are parametric or 
nonparametric.

• Linear regression and regression with linear parametric are canonical examples of 
parametric.

• Nearest neighbor algorithms are canonical examples of nonparametric.



Multivariate Polynomial Basis

• How does the polynomial basis, 𝜙𝜙, work if 𝑥𝑥 is multidimensional (an array 
rather than a number?)

• Multivariate polynomial on inputs 𝑥𝑥,𝑦𝑦:
𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐𝑦𝑦 + 𝑑𝑑𝑥𝑥𝑦𝑦 + 𝑒𝑒𝑥𝑥2 + 𝑓𝑓𝑦𝑦2 + 𝑔𝑔𝑥𝑥𝑦𝑦2 + ℎ𝑥𝑥2𝑦𝑦 + 𝑖𝑖𝑥𝑥3 + ⋯

• Multivariate polynomial on input 𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2:
𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖,1 + 𝑤𝑤3𝑥𝑥𝑖𝑖,2 + 𝑤𝑤4𝑥𝑥𝑖𝑖,1𝑥𝑥𝑖𝑖,2 + 𝑤𝑤5𝑥𝑥𝑖𝑖,12 + 𝑤𝑤6𝑥𝑥𝑖𝑖,22 + 𝑤𝑤7𝑥𝑥𝑖𝑖,1𝑥𝑥𝑖𝑖,22 + 𝑤𝑤8𝑥𝑥𝑖𝑖,12 𝑥𝑥𝑖𝑖,22 + 𝑤𝑤9𝑥𝑥𝑖𝑖,13 + ⋯

• The expression above is 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 for a linear parametric model using the 
multivariate polynomial basis.

• Notice that some 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 terms depend on more than one element of 𝑥𝑥𝑖𝑖!
• This term is 𝑤𝑤8𝜙𝜙8 𝑥𝑥𝑖𝑖



Fourier Basis

• Each 𝜙𝜙𝑗𝑗 is a cosine function with a different period.
• Can optionally include both sine and cosine functions.

• Univariate:
• 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 = cos(𝑗𝑗𝑗𝑗𝑥𝑥)

• Approximation of a step function (from Wikipedia “Fourier series” 
page)



Fourier Basis (Multivariate)



Feature Engineering 

• In some cases, you can hand-craft features
• Examples:

• Average STEM score
• Average non-STEM score

• Question: Why might these not be good features?
• Answer: They do not change the functions that can be 

represented!
• A weight of 𝑤𝑤𝑗𝑗 on STEM score equates to 

𝑤𝑤𝑗𝑗

9
being added to the weights on 

each of the STEM exams.
• Effective features are not linear combinations of existing features.
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