COMPSCI 389 Introduction to Machine Learning

Days: Tu/Th. Time: 2:30-3:45 Building: Morrill 2 Room: 222

Topic 5.6: Linear Regression and the Optimization Perspective Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Review: Regression

- X : Input (also called features, attributes, covariates, or predictors)
- Typically, X is a vector, array, or list of numbers or strings.
- Y : Output (also called labels or targets)
- In regression, Y is a real number.
- An input-output pair is (X, Y).
- Let n, called the data set size, be the number of input-output pairs in the data set.
- Let $\left(X_{i}, Y_{i}\right)$ denote the $i^{\text {th }}$ input output pair.
- The complete data set is

$$
\left(X_{i}, Y_{i}\right)_{i=1}^{n}=\left(\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)\right) .
$$

Review: Nearest Neighbor (Variants)

- Given a query input $x_{\text {query }}$, find the k nearest points in the training data.
- Return a weighted average of their labels.
- $k=1$ is nearest neighbor
- $k>1$ with all w_{i} equal is k -nearest neighbor
- $k>1$ with not all w_{i} equal is weighted k-nearest neighbor
- These algorithms don't pre-process the training data much.
- They can build data structures like KD-Trees for efficiency.

Linear Regression

- Search for the line that is a best fit to the data.
- Different performance measures correspond to different ways of measuring the quality of a fit.
- Sample mean squared error, or the sum of the squared errors is particularly common:

$$
\widehat{\operatorname{MSE}}_{n}: \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \text { and SSE: } \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- Although not identical, the line that minimizes one also minimizes the other.
- Using sample MSE, this method is called "least squares linear regression."

Linear Regression: What is a line?

Prediction, $\widehat{y_{i}} \quad$ Slope, $m \quad$ Input, $x_{i} \quad y$-intercept, b
"weights," or "parameters", $w=\left(w_{1}, w_{2}\right)$

$$
\hat{y}=w_{1} x_{i}+w_{2}
$$

Models (Review)

- A model is a mechanism that maps input data to predictions.
- ML algorithms take data sets as input and produce models as output.

Parametric Model

- A model "parameterized" by a weight vector w.
- Different settings of w result in different predictions.
- Let $\hat{y}=f_{w}(x)$
- 1-dimensional linear case:

$$
f_{w}(x)=w_{1} x+w_{2}
$$

Linear Regression: Hyperplanes

- What if we have more than one input feature?
- Let $x_{i}=\left(x_{i, 1}, x_{i, 2}, \ldots, x_{i, d}\right)$ be a d-dimensional input.
- We include the i subscript to make it clear that $1,2, \ldots$ aren't referencing different input vectors, but different elements of one input vector.
-We use a hyperplane:

Linear Regression (cont.)

$$
f_{w}\left(x_{i}\right)=w_{1} x_{i, 1}+w_{2} x_{i, 2}+\ldots+w_{d} x_{i, d}+w_{d+1}
$$

- Thought: We don't want to have to keep remembering a special "intercept" term.
- Idea: Drop the intercept term!
- If you want to include the intercept term, add one more feature to your data set, $x_{d+1}=1$.
- If d is the dimension of the input with this additional feature, we then have:

$$
f_{w}\left(x_{i}\right)=w_{1} x_{i, 1}+w_{2} x_{i, 2}+\ldots+w_{d} x_{i, d}
$$

- We can write this as:

$$
f_{w}\left(x_{i}\right)=\sum_{j=1}^{d} w_{j} x_{i, j}
$$

- This is called a dot product and can be written as $w \cdot x_{i}$ or $w^{T} x_{i}$.

Linear Regression (cont.)

$$
\widehat{y}_{i}=f_{w}\left(x_{i}\right)=\sum_{j=1}^{d} w_{j} x_{i, j}
$$

- How many weights (parameters) does the model have?
- d, the dimension of any one input vector x_{i}.
- Not n, the number of training data points.

Linear Regression: Optimization Perspective

- Given a parametric model f_{w} of any form how can we find the weights w that result in the "best fit"?
- Let L be a function called a loss function.
- It takes as input a model (or model weights w)
- It also takes as input data D
- It produces as output a real-number describing how bad of a fit the model is to the provided data.
- The evaluation metrics we have discussed can be viewed as loss functions. For example, the sample MSE loss function is:

$$
L(w, D)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{\dot{n}}\left(y_{i}-f_{w}\left(x_{i}\right)\right)^{2}
$$

- We phrase this as an optimization problem:

$$
\operatorname{argmin}_{w} L(w, D)
$$

Linear Regression: Optimization Perspective

$$
\operatorname{argmin}_{w} L(w, D)
$$

- Recall: argmin returns the w that achieves the minimum value of $L(w, D)$, not the minimum value of $L(w, D)$ itself.
- This expression describes a massive range of ML methods.
- Supervised, unsupervised, (batch/offline) RL
- Deep neural networks
- Large language models and generative AI
- Different problem settings and algorithms in ML correspond to:
- Different loss functions
- Different parametric models.
- Different algorithms for approximating the best weight vector w.

Least Squares Linear Regression (cont.)

- Find the weights w that minimize

$$
\begin{aligned}
& \qquad \begin{array}{l}
L(w, D)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{w}\left(x_{i}\right)\right)^{2} \\
\text { Dimension of each input vector } \\
\text { (number of features per row) }
\end{array} \\
& L(w, D)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} w_{j} x_{i, j}\right)^{2}
\end{aligned}
$$

Linear Regression: Least Squares Solvers

- How should one solve this problem?

$$
\operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} w_{j} x_{i, j}\right)^{2}
$$

- Answer: "Least squares solvers"
- Algorithms based on concepts from linear algebra.
- Extremely effective for solving problems of precisely this form.
- Beyond the scope of this class.
- Only useful for this exact problem.
- Not effective when using other parametric models (e.g., not linear)
- Not effective when using other loss functions / performance metrics.

Linear Regression

- How do we solve this problem?

$$
\operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} w_{j} x_{i, j}\right)^{2}
$$

- We will study a different approach for solving this problem.
- It is less efficient.
- It applies to almost all loss functions and parametric models of interest.
- Method: Gradient descent.
- Soon we will discuss gradient descent.
- For now, assume we have some way of finding the $\operatorname{argmin}_{w} L(w, D)$.

Least Squares Linear Regression

Linear Regression vs Weighted k-NN for GPA Prediction

Weighted KNN Model:

Average MSE: 0.571
MSE Standard Error: 0.004

Linear Regression Model:
Average MSE: 0.582
MSE Standard Error: 0.004

Very simple method achieves nearly the same performance as a tuned-version of weighted k-NN!

Soon, we will consider more complex parametric models that can be even more effective.

Linear Regression Limitation

- What if the relationship between the inputs and outputs is not linear (or affine)?
- Linear: $A_{1} x_{i, 1}+A_{2} x_{i, 2}+\cdots+A_{n} x_{i, n}$
- Affine: $A_{1} x_{i, 1}+A_{2} x_{i, 2}+\cdots+A_{n} x_{i, n}+b$
- Equivalent to linear with an additional feature $x_{i, n+1}=1$.
- Idea: Have parametric functions that can represent more than linear functions!

Linear Parametric Model $=$ Linear Functions

- Linear parametric functions are functions $f_{w}\left(x_{i}\right)$ that are linear functions of the weights w.
- They need not be linear functions of the input x_{i}.

Linear Parametric Model $=$ Linear Functions

- Linear parametric functions are functions $f_{w}\left(x_{i}\right)$ that are linear functions of the weights w.
- They need not be linear functions of the input x_{i}.
- That is, a linear parametric model has the form:

$$
f_{w}\left(x_{i}\right)=\sum_{j=1}^{m} w_{j} \phi_{j}\left(x_{i}\right)
$$

where ϕ takes the input vector x_{i} as input and produces a vector of m features as output. That is, $\phi_{j}\left(x_{i}\right)$ is the j th feature output by ϕ.

- ϕ is called the basis function, feature generator, or feature mapping function.

Linear Parametric Model

$$
f_{w}\left(x_{i}\right)=\sum_{j=1}^{m} w_{j} \phi_{j}\left(x_{i}\right)
$$

- Polynomial basis
- If $x_{i} \in \mathbb{R}$ then $\phi_{j}\left(x_{i}\right)=x_{i}^{j-1}$ so that:

$$
\phi\left(x_{i}\right)=\left[1, x_{i}, x_{i}^{2}, x_{i}^{3}, \ldots, x_{i}^{m-1}\right]
$$

- Here $m-1$ is the degree or order of the polynomial basis.
- $f_{w}\left(x_{i}\right)=w_{1}+w_{2} x_{i}+w_{3} x_{i}^{2}+w_{4} x_{i}^{3}+\cdots+w_{m} x_{i}^{m-1}$
- We are fitting a polynomial to the data!
- This is a non-linear function of the input x_{i}
- This can represent any smooth function (if m is big enough).
- This is a linear function of w.

Linear Parametric Models (cont.)

- What does it mean for a function $g(x, y)$ to be linear with respect to an input, x ?
- The slope is constant as x changes.
- The derivative with respect to x is a constant (does not vary with x)
- Is $g(x, y)=x^{2} y^{2}$ linear with respect to (w.r.t.) x ?
- $\frac{\partial g(x, y)}{\partial x}=2 x y^{2}$, which changes with x, so no.
- Is $g(x, y)=x \sin (y)$ linear w.r.t. x ?
- $\frac{\partial g(x, y)}{\partial x}=\sin (y)$, which does not change with x, so yes!
- Is $f_{w}\left(x_{i}\right)=\sum_{j=1}^{m} w_{j} \phi_{j}\left(x_{i}\right)$ linear w.r.t. w ?
- $\frac{\partial f_{w}\left(x_{i}\right)}{\partial w_{j}}=\phi_{j}\left(x_{i}\right)$, for all j, which does not change with w, so yes!

Linear Parametric Models (cont.)

- Is $f_{w}\left(x_{i}\right)=\sum_{j=1}^{m} w_{j} \phi_{j}\left(x_{i}\right)$ linear w.r.t. x ?
- $\frac{\partial f_{w}\left(x_{i}\right)}{\partial x_{i, j}}=w_{j} \frac{\partial \phi_{j}\left(x_{i}\right)}{\partial x_{i, j}}$, for all j.
- If ϕ is linear w.r.t. x then yes, otherwise no.
- Is $f_{w}\left(x_{i}\right)=w_{1} w_{2} x_{i, 1}^{2}$ linear w.r.t. w ?
- $\frac{\partial f_{w}\left(x_{i}\right)}{\partial w_{1}}=w_{2} x_{i, 1}^{2}$
- No. It is linear w.r.t. w_{1} but not linear w.r.t. w.
- Linear w.r.t. w means that the derivative w.r.t. w (a vector) does not depend on w (a vector).
- Note: The derivative w.r.t. w is

$$
\left[\frac{\partial f_{w}\left(x_{i}\right)}{\partial w_{1}}, \frac{\partial f_{w}\left(x_{i}\right)}{\partial w_{2}}\right]^{T}
$$

This T means "transpose," which just means that this should be viewed as a column not a row (the elements stacked vertically rather than horizontally). This isn't important for this course.

Linear Parametric Models

Linear Parametric Model vs Linear Regression vs Weighted k-NN for GPA Prediction
(20-fold cross-validation)

- Weighted KNN Model:
- Average MSE: 0.571
- MSE Standard Error: 0.004
- Linear Regression Model:
- Average MSE: 0.582

Recall k-NN results:

- MSE Standard Error: 0.004
- Polynomial Regression Model (Degree 4):
- Average MSE: 0.576
- MSE Standard Error: 0.004

[^0]| | \mathbf{k} | MSE |
| ---: | ---: | ---: |
| 0 | 1 | 1.152084 |
| 1 | 2 | 0.853430 |
| 2 | 3 | 0.764468 |
| 3 | 5 | 0.688330 |
| 4 | 10 | 0.631001 |
| 5 | 100 | $\mathbf{0 . 5 7 9 4 0 4}$ |
| 6 | 1000 | 0.581676 |
| 7 | 5000 | 0.600544 |

Linear Parametric Models

- Pros:
- Relatively simple.
- Can represent any smooth function (given the right / enough features).
- Can use hand-crafted features.
- Quite efficient to solve for optimal w.
- Can still use least squares solvers - need not use gradient descent.
- Extremely fast to generate predictions for new inputs
- Compute features, take the dot-product with the weights (take the weighted sum)
- Cons:
- Can be hard to find good features.
- People often think linear parametric models can only represent lines, and so they think negatively of them.

Parametric vs Nonparametric

- ML algorithms are often categorized into parametric and nonparametric.
- In general:
- Parametric methods use parameterized functions with weights w.
- Nonparametric methods store the training data or statistics of the training data.
- More precisely
- Parametric:
- Have a fixed number of weights w.
- Tend to make specific assumptions about the form of the function.
- Nonparametric:
- Do not make explicit assumptions about the form of the function.
- Number of values stored tends to vary with the amount of training data (e.g., storing data).
- There is some debate about whether some methods are parametric or nonparametric.
- Linear regression and regression with linear parametric are canonical examples of parametric.
- Nearest neighbor algorithms are canonical examples of nonparametric.

Multivariate Polynomial Basis

- How does the polynomial basis, ϕ, work if x is multidimensional (an array rather than a number?)
- Multivariate polynomial on inputs x, y :

$$
a+b x+c y+d x y+e x^{2}+f y^{2}+g x y^{2}+h x^{2} y+i x^{3}+\cdots
$$

- Multivariate polynomial on input $x_{i, 1}, x_{i, 2}$: $w_{1}+w_{2} x_{i, 1}+w_{3} x_{i, 2}+w_{4} x_{i, 1} x_{i, 2}+w_{5} x_{i, 1}^{2}+w_{6} x_{i, 2}^{2}+w_{7} x_{i, 1} x_{i, 2}^{2}+w_{8} x_{i, 1}^{2} x_{i, 2}^{2}+w_{9} x_{i, 1}^{3}+\cdots$
- The expression above is $f_{w}\left(x_{i}\right)$ for a linear parametric model u'sing the multivariate polynomial basis.
- Notice that some $\phi_{j}\left(x_{i}\right)$ terms depend on more than one element of x_{i} !
- This term is $w_{8} \phi_{8}\left(x_{i}\right)$

Fourier Basis

- Each ϕ_{j} is a cosine function with a different period.
- Can optionally include both sine and cosine functions.
- Univariate:
- $\phi_{j}\left(x_{i}\right)=\cos (j \pi x)$
- Approximation of a step function (from Wikipedia "Fourier series" page)

Fourier Basis (Multivariate)

Figure 3: A few example Fourier basis functions defined over two state variables. Lighter colors indicate a value closer to 1 , darker colors indicate a value closer to -1 .

Feature Engineering

- In some cases, you can hand-craft features
- Examples:
- Average STEM score
- Average non-STEM score
- Question: Why might these not be good features?
- Answer: They do not change the functions that can be represented!
- A weight of w_{j} on STEM score equates to $\frac{w_{j}}{9}$ being added to the weights on each of the STEM exams.
- Effective features are not linear combinations of existing features.

End

[^0]: MSE

